

Standard Reference Material® 1680b

Carbon Monoxide in Nitrogen

(Nominal Amount-of-Substance Fraction 500 µmol/mol)

This certificate reports the certified values for Lot 2-I-XX

This Standard Reference Material (SRM) is a primary gas mixture for which the amount-of-substance fraction, expressed as concentration [1], may be related to secondary working standards. This SRM is intended for the calibration of instruments used for carbon monoxide determinations and for other applications.

This SRM mixture is supplied in a DOT 3AL-specification aluminum (6061 alloy) cylinder with a water volume of 6 L. Mixtures are shipped with a nominal pressure exceeding 12.4 MPa (1800 psig), which provides the user with 0.73 m³ (25.8 ft³) of useable mixture. The cylinder is the property of the purchaser and is equipped with a CGA-350 brass valve, which is the recommended outlet for this carbon monoxide mixture.

Certified Value: This SRM mixture has been certified for carbon monoxide concentration. The certified value given below applies to the identified cylinder and NIST sample number.

Carbon Monoxide Concentration: 496.7 \pm 1.6 μ mol/mol

Cylinder Number: Sample
Hydrotest Date: August 2004

NIST Sample Number: Sample
Blend Date: September 2004

A NIST certified value is a value for which NIST has the highest confidence in its accuracy in that all known or suspected sources of bias have been investigated or taken into account [2]. The uncertainty of the certified value includes the estimated uncertainties in the NIST standards, the analytical comparisons to the lot standard (LS), and the uncertainty of comparing the LS with each of the mixtures comprising this lot. The uncertainty is expressed as an expanded uncertainty $U = ku_c$ with u_c determined by experiment and a coverage factor k = 1.95. The true value for the carbon monoxide amount-of-substance fraction is asserted to lie in the interval defined by the certified value $\pm U$ with a level of confidence of approximately 95 % [3].

Expiration of Certification: The certification of **SRM 1680b Lot No. 2-I-XX** is valid from this certificate issue date, within the measurement uncertainties specified, until **20 February 2017**, provided the SRM is handled and stored in accordance with the instructions given in this certificate (see "Cylinder and Gas Handling Information"). The certification is nullified if the SRM is damaged, contaminated, or otherwise modified.

Cylinder and Gas Handling Information: NIST recommends the use of a high-purity, two-stage pressure regulator with a stainless steel diaphragm and CGA-350 outlet to safely reduce the pressure and to deliver this SRM mixture to the instrument. The regulator should be purged to prevent accidental contamination of the SRM by repeatedly (minimum three times) opening the valve and pressurizing the regulator, then closing the valve and releasing the pressure safely into a vent line. This SRM should not be used after the internal pressure drops below 0.7 MPa (100 psig). This SRM should be stored under normal laboratory conditions within the temperature range of 15 °C to 30 °C.

The overall direction and coordination of the technical work required for certification of this SRM were performed by F.R. Guenther of the NIST Chemical Sciences Division.

Carlos A. Gonzalez, Chief Chemical Sciences Division

Gaithersburg, MD 20899 Certificate Issue Date: 18 June 2013 Certificate Revision History on Last Page Robert L. Watters, Jr., Director Office of Reference Materials

SRM 1680b Page 1 of 2

Analytical measurements leading to the certification of the current SRM lot were performed by M.E. Kelley of the NIST Chemical Sciences Division.

Support aspects involved in the issuance of this SRM were coordinated through the NIST Office of Reference Materials.

Maintenance of SRM Certification: Periodic analyses of SRM units from this lot are performed at NIST to monitor stability. If substantive technical changes occur that affect the certification before the expiration of this certificate, NIST will notify the purchaser. Registration (see attached sheet) will facilitate notification.

Mixture Preparation: The gas mixtures comprising this SRM lot were prepared in accordance with NIST technical specifications by a commercial specialty gas vendor under contract to NIST. The specifications stipulate that each SRM mixture be identical in carbon monoxide concentration and stable with time.

Analytical Methods: Analyses of the carbon monoxide concentration for this lot of cylinders were conducted by comparing each cylinder mixture to a representative cylinder chosen from the lot, the lot standard (LS), using a gas chromatograph equipped with a flame ionization detector with a methanation unit (GC/Meth/FID). Assignment of the carbon monoxide concentration to the LS was accomplished by comparison to primary gravimetric standards using GC/Meth/FID.

Homogeneity Analysis: Each of the carbon monoxide mixtures that comprise this SRM lot was compared to the LS using GC/Meth/FID. A statistical analysis of the analytical results indicated that sample-to-sample carbon monoxide concentration differences were not statistically significant. This indicates that, within the precision of the NIST measurements, all of the cylinders comprising this SRM lot have identical carbon monoxide concentrations. Therefore, one concentration has been assigned to the entire SRM lot.

Carbon Monoxide Concentration Value Assignment: The certified carbon monoxide concentration for this SRM lot was computed from the assigned concentration for the lot standard and the homogeneity analysis.

CAS Registry Numbers: This SRM is certified for carbon monoxide in nitrogen. The relevant CAS Registry numbers for these components are: carbon monoxide CAS Registry 630-08-0; nitrogen CAS Registry 7727-37-9.

REFERENCES

- [1] Thompson, A.; Taylor, B.N.; *Guide for the Use of the International System of Units (SI)*; NIST Special Publication 811; U.S. Government Printing Office: Washington, DC (2008); available at http://www.nist.gov/pml/pubs/sp811/index.cfm (accessed June 2013).
- [2] May, W.; Parris, R.; Beck II, C.; Fassett, J.; Greenberg, R.; Guenther, F.; Kramer, G.; Wise, S.; Gills, T.; Colbert, J.; Gettings, R.; MacDonald, B.; *Definition of Terms and Modes Used at NIST for Value-Assignment of Reference Materials for Chemical Measurements*; NIST Special Publication 260-136 (2000); available at http://www.nist.gov/srm/upload/SP260-136.PDF (accessed June 2013).
- [3] JCGM 100:2008; Evaluation of Measurement Data Guide to the Expression of Uncertainty in Measurement; (GUM 1995 with Minor Corrections), Joint Committee for Guides in Metrology (JCGM) (2008); available at http://www.bipm.org/utils/common/documents/jcgm/JCGM_100_2008_E.pdf (accessed June 2013); see also Taylor, B.N.; Kuyatt, C.E.; Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Results; NIST Technical Note 1297, U.S. Government Printing Office: Washington, DC (1994); available at http://www.nist.gov/pml/pubs/index.cfm (accessed June 2013).

Certificate Revision History: 18 June 2013 (Extension of certification period; corrected month of hydrotest date; editorial changes); 18 December 2006 (Original certificate date).

Users of this SRM should ensure that the Certificate of Analysis in their possession is current. This can be accomplished by contacting the SRM Program: telephone (301) 975-2200; fax (301) 948-3730; e-mail srminfo@nist.gov; or via the Internet at http://www.nist.gov/srm.

SRM 1680b Page 2 of 2